Analysis of Incomplete Multivariate Data

Analysis of Incomplete Multivariate Data

J.L. Schafer
0 / 0
Колко ви харесва тази книга?
Какво е качеството на файла?
Изтеглете книгата за оценка на качеството
Какво е качеството на изтеглените файлове?
The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms.All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.
Тип съдържание:
Книги
Година:
1997
Издание:
1
Издателство:
Chapman and Hall/CRC
Език:
english
Страници:
417
ISBN 10:
0412040611
ISBN 13:
9780412040610
Серия:
Chapman & Hall/CRC Monographs on Statistics & Applied Probability
Файл:
PDF, 6.53 MB
IPFS:
CID , CID Blake2b
english, 1997
pdf, 6.53 MB
Преобразуването в се извършва
Преобразуването в е неуспешно

Най-често използвани термини